Nutritional Interventions for the Prevention of Cognitive Impairment and Dementia in Developing Economies of East Asia: Systematic Review and Meta-Analysis

Andrea McGrattan¹, Carla van Aller¹, Alla Narytnyk², Daniel Reidpath³, Pascale Allotey³, Devi Mohan⁴, Blossom Stephan¹, Louise Robinson¹, Mario Siervo⁵

¹Institute of Health and Society, and Institute of Ageing; Newcastle University, Newcastle, United Kingdom. ²Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom. ³Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia. ⁴Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia. ⁵School of Life Sciences, The University of Nottingham Medical School, Nottingham, United Kingdom

INTRODUCTION

Dementia represents one of the impending global health challenges, and low and middle-income countries (LMICs) are projected to greatly contribute to the rising dementia global burden. Currently, there is a lack of pharmacological treatment for dementia and therefore research efforts have focused on prevention, with the identification of early lifestyle, demographic and nutritional risk factors.

Diet may be an important modifiable risk factor for maintenance of cognitive health in later life. There are plausible suggestions to support the synergistic effects of certain nutrients, such as polyphenols, unsaturated fats and antioxidant vitamins, in having a beneficial role in the modulation of oxidative stress and neuro-inflammation – processes associated with cognitive decline. Therefore, the aim of this systematic review was to evaluate the current evidence on nutritional interventions for the prevention of dementia in developing economies in East Asia.

INCLUSION CRITERIA & OUTCOMES

<u>Inclusion:</u> Randomised clinical trials [RCTs], conducted in adult humans [≥18 years], assessing the effect of nutritional interventions on cognitive performance, and / or incidence of mild cognitive impairment [MCI] or dementia. <u>Outcomes:</u> [1] global cognitive performance and [2] domain specific cognitive performance. Data was pooled by random model analysis and estimates of effect size were given for each domain and sub-categorised according to the type of nutritional intervention.

METHODS

Four comprehensive medical databases were searched from inception until February 2019: MEDLINE, EMBASE, PsycINFO and Scopus.

Figure 1: PRISMA flow diagram

RESULTS

Twenty-two RCTs were included, of which, sixteen studies showed significant beneficial effects in favour of the nutritional intervention based on single neuropsychological test scores and / or scores of global cognitive assessment tools. Sixteen studies had sufficient data reported for marginally significant meta-analysis, and beneficial effects were found on global cognitive performance in elderly for micro-nutrient supplementation [n=4 studies, n=451 participants, std mean difference: 0.41 [-0.03; 0.84], p=0.07], and EPA / DHA supplementation [n=4 studies, n=373 participants, std mean difference 0.57 [-0.01; 1.14], p=0.06].

<u>Group by</u> Intervention	<u>Study nam</u> e	<u>Outcome</u>	Sta	atistics for o	each study	_		Std diff in means and 95% CI			
			Std diff in means	Lower limit	Upper limit	p-Value					
1. Micronutrient	Sun, 2007	Combined	-0,13	-0,54	0,29	0,55		-			
1. Micronutrient	Cheng, 2016	BCAT total score	0,31	-0,13	0,74	0,17				-	
1. Micronutrient	Ng, 2017	RBANS global score	0,51	0,11	0,92	0,01					
1. Micronutrient	Ma, 2016	WAIS-RC full scale IQ	0,88	0,57	1,19	0,00				∎	
1. Micronutrient			0,41	-0,03	0,84	0,07					
3. Counselling	Kwok, 2012	MMSE	-0,19	-0,42	0,03	0,09			╼╋┥		
3. Counselling	Johari, 2014	MMSE	0,33	-0,34	1,00	0,33			╺╼┼╼┺		
3. Counselling			-0,03	-0,50	0,45	0,91		-		-	
4. EPA/DHA	Lee, 2013	MMSE	0,04	-0,61	0,70	0,89				-	
4. EPA/DHA	Chiu, 2008	Combined	0,13	-0,61	0,87	0,72					
4. EPA/DHA	Bo, 2017	BCAT total score	0,62	0,19	1,06	0,00					
4. EPA/DHA	Zhang, 2017	WAIS-RC full scale IQ	1,21	0,94	1,49	0,00					
4. EPA/DHA			0,57	-0,01	1,14	0,06					
5. Soy-isoflavone	Ho, 2007	Combined	-0,03	-0,32	0,27	0,86					
5. Soy-isoflavone			-0,03	-0,32	0,27	0,86					
Overall			0,14	-0,06	0,34	0,18			-		
							-2,00	-1,00	0,00	1,00	2,00
							Fa	avours control	Favo	urs interventi	on

DISCUSSION

Several promising strategies, such as B-vitamin supplementation, EPA / DHA supplementation and nutrition and lifestyle counselling interventions, seem to be able to decrease age-related cognitive decline in East Asia. Large, good quality, long term trials are needed to confirm these findings, to further evaluate the role of nutritional interventions on cognitive function and to identify if these interventions are feasible and effective to decrease dementia incidence in developing economies, like East Asia.

the NIHR or the UK Department of Health and Social Care.